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Summary

The dependence of rock behavior on the deformation rate is still not well

understood. In salt rock, the fundamental mechanisms that drive the

accumulation of irreversible deformation, the reduction of stiffness, and the

development of hysteresis during cyclic loading are usually attributed to

intracrystalline plasticity and diffusion. We hypothesize that at low pressure

and low temperature, the rate-dependent behavior of salt rock is governed

by water-assisted diffusion along grain boundaries. Accordingly, a chemo-

mechanical homogenization framework is proposed in which the representa-

tive elementary volume (REV) is viewed as a homogeneous polycrystalline

matrix that contains sliding grain-boundary cracks. The slip is related to the

mass of salt ions that diffuse along the crack surface. The relationship between

fluid inclusion-scale and REV-scale stresses and strains is established by using

the Mori–Tanaka homogenization scheme. It is noted from the model that a

lower strain rate and a larger number of sliding cracks enhance stiffness reduc-

tion and hysteresis. Thinner sliding cracks (i.e., thinner brine films) promote

stiffness reduction and accelerate stress redistributions. The larger the volume

fraction of the crack inclusions, the larger the REV deformation and the larger

the hysteresis. Results presented in this study shed light on the mechanical

behavior of salt rock that is pertinent to the design of geological storage

facilities that undergo cyclic unloading, which could help optimize the energy

production cycle with low carbon emissions.
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1 | INTRODUCTION

Salt rock is a favorable host material for geological storage of hydrocarbons, compressed-air energy storage (CAES),
sequestration of CO2, and disposal of radioactive waste because of its low permeability and ideal creep properties. Salt
rock is made of bonded halite crystals. Crystal plasticity influences the development of microscopic cracks,1,2 and
intergranular sliding leads to the degradation of the elastic moduli of the polycrystal.3-6 In salt rock, frictional sliding at
grain boundaries is the primary accommodation mechanism at room temperature and in dry conditions, low confining
pressure, and high strain rate.7 Deformation is controlled by the normal and shear stresses at grain boundaries and by
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the distribution of boundary orientations. The rate of diffusional sliding depends on the availability of water and on the
shape of the grain boundaries.8

The strain rate is a significant factor in the mechanical behavior of salt rock.10-12 At low strain rate, the dominant
mechanism can be diffusion. At higher temperature solid state, diffusion can occur within the lattice of crystals
(a phenomenon called Nabarro–Herring creep) or along the grain boundaries (a phenomenon called Coble creep).13,14

The presence of intergranular brine can activate pressure solution at lower temperature.15-19 Pressure solution in crys-
talline media involves dissolution at the grain-to-grain contacts that are under high stress, transportation of ions by dif-
fusion in fluid films along grain boundaries, and re-precipitation at grain-to-grain contacts that are under low stress. In
wet salt rock, pressure solution can dominate creep for temperatures below 350�C (Figure 1). The goal of this study is
to gain a fundamental understanding of the mechanisms that influence the accumulation of irreversible deformation
under cyclic loading and the development of hysteresis at low temperature and high strain rate.

The mechanical behavior of a polycrystalline rock can be described via homogenization of diverse and realistic
microstructures, that is, by upscaling crystal-, boundary-, or grain- scale mechanisms to the scale of the volume of a
specimen. The smallest material volume element above which an effective property does not vary with position of that
element is called the representative elementary volume (REV).20 Homogenization is a procedure that allows relating
field variables at the microscale to those at the macroscale of the REV21 and calculating the effective mechanical prop-
erties of a composite.

The REV is often viewed as a homogeneous matrix that contains several families of inclusions. The solution of the
inclusion–matrix interaction problem was established by Eshelby22 for an infinitely extended linear elastic matrix that
contains ellipsoidal inclusions. Numerous models were since then developed to predict the effective properties of an
inhomogeneous continuum with ellipsoidal inclusions based on Eshelby's solution.23-25 The local strain (or stress) field
is written as the sum of the far field strain (or stress) boundary condition plus a so-called disturbance strain (or stress)
field (note that the reasoning is the same for mixed boundary conditions). In Eshelby's theory, the key idea is to model
each inclusion by a domain that has the same stiffness as that of the matrix but to add a so-called eigenstrain
(or eigenstress) field to the local strain (or stress) field in the inclusion. For instance, in the Mori–Tanaka scheme, the
average disturbance strain (or stress) field in the matrix is zero, so that the average matrix strain (or stress) is equal to
the far field strain. Physically, that means that inclusions interact with a matrix subjected to a uniform strain (or stress)
in the far field.26-28 The Mori–Tanaka scheme has been widely used because of its accuracy and simplicity,29,30 for
instance, to predict the deformation of voids and the propagation of cracks in porous media.31 Each family of voids is
regarded as a set of inclusions subjected to a pore pressure field that is independent from the stress field of the matrix.
Pore pressure adds to the eigenstress that stems from the difference of stiffness between the matrix and the inclusions.
The Mori–Tanaka scheme was also used to calculate the thermal expansion of composites. In this case, the eigenstrain
is the thermal deformation, expressed as a function of the difference between the thermal expansion coefficient of the
matrix and that of the inclusions.32 It was noted that for a composite material that contains inclusions with eigenstrains
other than the eigenstrains that stem from mechanical heterogeneity, the REV stiffness tensor predicted with the Mori–
Tanaka scheme may violate symmetry requirements if inclusions have different orientations and shapes.27,33

In this paper, we propose a homogenization scheme to understand the rate dependent decrease of stiffness and the
hysteretic behavior of salt rock documented during cyclic compression tests. The experimental procedures and results
are presented in Section 2. On the basis of our experimental observations, we hypothesize that the rate-dependent

FIGURE 1 Deformation map of damp halite. LT represents low

temperature; HT represents high temperature; N-H represents Nabarro–
Hering9
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behavior of salt rock is governed by pressure solution on grain boundaries. Accordingly, Section 3 explains grain bound-
ary sliding by a micromechanical model based on the pressure-solution theory. In Section 4, a Mori–Tanaka homogeni-
zation scheme is used to upscale the local sliding mechanisms at the REV scale. In Section 5, the model is calibrated
against the experimental results obtained for sets of loading cycles with permanent strain 0% and 3.8%. In Section 6,
sensitivity analyses are conducted to evaluate the effects of local diffusion at grain contacts on the macroscopic defor-
mation of salt rock. We discuss the mechanisms that most contribute to the dissipation of energy at REV scale in Sec-
tion 7, and Section 8 summarizes the conclusions of this study.

2 | EXPERIMENTAL OBSERVATIONS DURING CYCLIC COMPRESSION
TESTS

We conducted cyclic triaxial compression experiments on synthetic salt rock to study the viscoelastic behavior of salt
aggregates.34 Synthetic salt-rock specimens were fabricated by consolidating reagent-grade granular salt (grain diameter
0.3–0.355mm) in a hollow cylindrical steel vessel under a maximum axial stress of 75MPa, a temperature of 150�C,
and a displacement rate of 0.34 mm/s. The consolidation took approximately 15 min. Fabricated specimens were right-
circular cylinders (19-mm diameter and 43-mm length) with a bulk porosity of 5.45 ± 0.06%. Fabricated salt-rock speci-
mens were installed in a triaxial vessel and loaded up to yield at a confining pressure of 1MPa, at a strain rate of
3 × 10−5/s, at room temperature, and in the absence of pore fluid. To characterize viscoelastic deformation as a function
of inelastic strain, the specimens were then subjected to multiple loading cycles. In these conditions, specimen deforma-
tion involves a mixed-mode of grain boundary opening, sliding, and intracrystalline plasticity that manifests through
viscoelastic behavior.34

In the cyclic triaxial compression tests, two types of loading cycles were utilized to characterize viscoelastic behav-
ior: (1) a large loading cycle in which differential stress was cycled between zero-stress and the flow strength (�40
MPa) and in which the specimen was deformed permanently by a specified increment of axial strain before the
unloading portion of the cycle and (2) small loading cycles in which differential stress was cycled between 0 and 6.5
MPa and in which the specimen deformed elastically (Figure 2). Small loading cycles were implemented within large
loading cycles at three different strain rates to quantify rate-dependent elastic behavior at a given axial strain. The first
small loading cycle (C1) was applied at a rate of 3 × 10−5/s, the second small loading cycle (C2) was applied at a rate of
3 × 10−6/s, and the third small loading cycle (C3) was applied at a rate of 3 × 10−7/s. The time period between C1 and
C2 was 147 s, and the time period between C2 and C3 was 538 s. The unloading phases of small cycles were extended to
allow slight separation of sample from the piston and therefore confirming full removal of axial load. Upon reloading,
the axial load started increasing once the piston came into contact with the sample again. This resulted in a short period
of zero load between small cycles, which increased in duration with decreasing reloading rate. Since the maximum dif-
ferential stress in the small loading cycles was much lower than the yield stress of salt rock (see Figure 2), we consid-
ered that cracks did not propagate during the small loading cycles, and therefore, that damage accumulated during the
large loading cycles only.

During the first set of small loading cycles, the stress–strain curves of C1, C2, and C3 exhibit the same linear elastic
behavior (see Figures 2 and 3). The strain rate does not affect the stiffness of the specimen, and no significant hysteresis
is observed. By contrast, the stress–strain curves obtained during the set of small cycles that followed the last large load-
ing cycle after a permanent axial strain of 3.8% has been reached and exhibit a marked decrease of stiffness and

FIGURE 2 Stress–strain curve obtained during cyclic

compression tests under a 1-MPa confining pressure. The maximum

differential stress during large loading cycles is 40MPa and about 6

MPa during small loading cycles34,35
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pronounced hysteresis (see Figure 3C,D). Stiffness degradation and hysteresis are enhanced by low strain rate
(i.e., stiffness degradation and hysteresis are more pronounced during C3 than C2 and more so in C2 than C1).

According to microscopic images taken after each large loading cycle (Figure 4), isolated fluid inclusions exist along
the grain boundaries at the beginning of the cyclic compression test. After a few cycles, these fluid inclusions tend to
connect to one another because of grain boundary sliding. A thin film forms at grain contacts. We hypothesize that this
brine film facilitates diffusion along grain boundaries and enhances pressure solution at the grain contacts. In the
following, we propose a micro–macro model to test this assumption. We simulate the behavior of salt rock during the
small loading cycles, and we check that the model can be used to predict the rate dependence of the REV response.

3 | MICROMECHANCIAL MODEL OF GRAIN BOUNDARY SLIDING BY
PRESSURE SOLUTION

3.1 | Conceptual model

From the discussion in Section 1 and the observations made in Section 2, we hypothesize that the rate-dependent
behavior of salt rock is governed by pressure solution on grain boundaries at low pressure and low temperature. When
subjected to normal stress, larger normal stress induces a higher chemical potential and the dissolution of salt crystals

(A) (B)

(C) (D)

FIGURE 3 Plots of differential

stress versus axial and radial strain

obtained experimentally for the first

and last set of small loading cycles.

(A) C1–C3 radial stress–strain curve

with ermanent axial strain ϵa = 0%.

(B) C1–C3 axial stress–strain curve

with permanent axial strain ϵa = 0%.

(C) C1–C3 radial stress–strain curve

with permanent axial strain ϵa = 3.8%.

(D) C1–C3 axial stress–strain curve

with permanent axial strain ϵa = 3.8%.

ϵa is the axial strain. ϵr is the radial

strain. The stress–strain relationship is

linear when ϵa is 0%. When ϵa equals

3.8%, hysteresis occurs in the specimen,

especially under lower strain rate34

[Colour figure can be viewed at

wileyonlinelibrary.com]

(A) (B)

FIGURE 4 Isolated fluid

inclusions along grain boundaries in

undeformed consolidated sample (5%

porosity)34 [Colour figure can be viewed

at wileyonlinelibrary.com]
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at contacts. Ions diffuse along fluid films at crystal boundaries and precipitate at the contacts with less normal stress.
Dissolution, diffusion, and precipitation happen simultaneously (but at different locations). Pressure solution thus
happens due to the presence of brine films along contacting grain boundaries. We represent the REV as a solid salt
matrix that contains intergranular shear-mode cracks. We model the shear-mode crack inclusions as a spherical volume
containing a crack, referred as a crack inclusion. Within one crack inclusion, the sliding plane is characterized by its
orientation in reference to the horizontal (angle θ), so that the REV is viewed as a distribution of oriented spherical
volumes (crack inclusions) embedded in a solid matrix. Additionally, we consider that the sliding planes are rough at a
finer scale; see Figure 5. The sliding plane has a saw tooth shape: It is made of alternating smooth planes of normal
directions n1 and n2. In the plane formed by the normal to the plane direction (n0, at an angle 90o + θ from the
horizontal) and the tangential direction t0, the plane can be represented by broken lines. The angle formed by the
direction of the broken lines (t1 and t2) with the direction of the sliding plane (t0) is noted α. The angle α is an indicator
of the roughness of the sliding plane.

The mechanism of pressure solution is explained in Figure 5B at the scale of one crack inclusion. σ1n and σ2n are the
projections of the stress in the spherical volume on two segments of the sliding plane. Without loss of generality, we
assume σ1n > σ2n . The larger normal compressive stress induces a higher chemical potential at the crack surface of
normal n1. The salt mineral thus dissolves first at the surface of normal n1, diffuses along the plane of normal n1, and
finally precipitates on a surface of normal n2, where the chemical potential is lower. This process happens simulta-
neously on all the segments of normals n1 and n2 in the shear-mode crack inclusion. As a result, the initial crack
surface (represented by a red solid line in Figure 5B) is transformed into another crack surface (represented with an
orange dashed line). The relation between the two crack surfaces is a translation, which explains the occurrence of
shear displacement along the crack plane.

3.2 | Thermodynamic model

A difference of normal stress at grain contacts triggers an increase of chemical potential μ as follows:

Δμ=ΔσΩ, ð1Þ

where Ω is the molar volume and Δσ is the difference of contact normal stress on the crack surface. The chemical
potential μ controls the local concentration of brine; larger chemical potentials lead to higher mineral concentrations,
according to the following relation:

μ=RTln
C
Co

, ð2Þ

(A) (B)

FIGURE 5 Model of a crack inclusion based on the pressure solution theory. a is the diameter of the spherical volume, b is the length

of a sliding segment within the sliding plane. c represents the thickness of the rough sliding plane (of normal n1 and n2, respectively). The

angle between the crack inclined segments and the crack plane is noted α.36 σ1n and σ2n are the normal stresses applied on the subsurfaces of

the sliding plane. dc is the shear displacement of the spherical volume [Colour figure can be viewed at wileyonlinelibrary.com]
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where R is the gas constant, T is the Kelvin temperature, C is the concentration of minerals (ions) in the fluid, and Co is
a reference concentration, which is taken equal to 6.48 × 10−6 mol/mm3 for salt.37 Differentiating Equation (2) with
respect to C yields

∂μ

∂C
=
RT
C

: ð3Þ

According to Fick's first law, the diffusion flux J(r) along a diffusion path at a location r (see Figure 6) is expressed
as follows:

JðrÞ= −D
∂C
∂r

, ð4Þ

where D is the grain boundary diffusion coefficient. With the assumption that C(r) can be taken as a constant Co,
16,19,37

Equation (3) is substituted into Equation (4), which yields

JðrÞ= −D
∂C
∂μ

∂μ

∂r
= −D

Co

RT
∂μ

∂r
: ð5Þ

In our model, each crack inclusion is a closed thermodynamic system. Based on the mass conservation principle,
the mass of mineral dissolved at grain contacts is equal to the mass of mineral that diffuses along the crack plane,
which can be written as follows:

2dSJðrÞ+ 2rdVd

Ω
=0, ð6Þ

where d is the width of the crack plane, S is the thickness of the brine film at the crack surface, and Vd is the dissolution
rate of mineral at the crack surface (velocity of the dissolution front). Substituting Equations (1) and (5) into Equa-
tion (6), we have

∂σ

∂r
=

RTrVd

DCoΩ2S
: ð7Þ

Integrating Equation (7) along the diffusion path, the dissolution rate Vd is expressed as follows:

Vd =
8DCoΩ2SΔσ

RTb2
: ð8Þ

According to the geometry of the cracks shown in Figure 5A, the length of a sliding segment within the sliding
plane b can be expressed as follows:

FIGURE 6 Diffusion process in the brine film. J(r) is the diffusion flux at

location r. d is the width of the crack plane. S is the thickness of the brine film

at the crack surface [Colour figure can be viewed at wileyonlinelibrary.com]
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c= bsinα: ð9Þ

As shown in Figure 5B, the tangential velocity Vc at the crack plane is related to the dissolution rate at the crack
plane, as follows:

Vc =Vdsinα: ð10Þ

The shear strain rate of the crack inclusion, noted _γc , is induced by the tangential velocity at the crack plane and
can be expressed as follows:

_γc =
Vdsinα

a
, ð11Þ

where it is reminded that we assume small deformation in the crack inclusions. Substituting Equation (8) into Equa-
tion (11) and using the geometric relationship c= b sin α, _γc we get

_γc =
8CoΩ2

RT
DSsin3αΔσ

ac2
: ð12Þ

In this study, the product of the diffusion coefficient D by the thickness of the brine film S is taken as 2.0 × 10−10

mm3/s.37

4 | HOMOGENIZATION SCHEME: FROM LOCAL SLIDING TO RATE-
DEPENDENT REV BEHAVIOR

We formulate a 3-D homogenization scheme to upscale grain sliding mechanisms at REV scale. For this, we adopt a
Mori–Tanaka scheme26 in which each crack inclusion is a sphere that contains a sliding plane, and that is embedded in
a solid matrix. That matrix is subjected to boundary conditions that are equivalent to the far field conditions imposed
on the infinite medium that the crack inclusion is embedded in. According to Eshelby's theory,22 the material properties
and the stress and strain fields are uniform in the matrix and in each crack inclusion. We gather crack inclusions into
families within which crack inclusions all have the same sliding plane orientation and the same sliding plane geometry
(sliding plane thickness c, roughness angle α). Crack inclusions of the same family thus have the same local stress and
strain fields. For the ith crack inclusion family, the local stress σi is expressed as a function of the local strain ϵi and of a
local eigenstrain ηi, which adds to the eigenstrain due to stiffness heterogeneity and represents the strain field that
would exist in the crack inclusion in the absence of matrix and crack inclusions around it. The microscopic stress can
thus be expressed as follows38:

σi =Ci : ϵi−Ci : ηi, ð13Þ

where Ci is the fourth-order stiffness tensor for the ith crack inclusion family and σi, ϵi, and ηi are all second-order
tensors.

In our study, ηi is induced by the shear displacement along the sliding planes in the crack inclusions. The in-plane
shear component of the second-order tensor ηi is equal to the accumulated chemical shear strain γc. _γc can be thought
of as a viscoplastic strain rate _ϵvp , similar to the viscoplastic strain rate used in other models.39-41 For example, Duvaut
and Lions suggested that _ϵvp should be a function of local stress, local stiffness, and the relaxation time.42 In Perzyna's
model, _ϵvp is proportional to the derivative of yield surface with respect to local stress.43 In our model, _γc is induced by
the pressure solution. Based on mass and energy principles at the inclusion scale, it is found that the chemical shear
strain rate is proportional to the difference of contact normal stress on the crack surface (Equation 12). Due to strain
compatibility and stress admissibility, the macroscopic strain �ϵ (respectively, the macroscopic stress �σ ) is the volume
average of the local strains ϵi (respectively, the volume average of the local stresses σi) in all crack inclusions over the
REV. The homogenized stiffness Chom of the REV is the volume average of the local stiffnesses, weighted by the
inclusion-specific concentration tensors Ai:

SHEN ET AL. 7
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Chom =
Xn

i=0
ϕiCi :Ai, ð14Þ

where ϕi is the volume fraction of crack inclusion family i and n is the number of crack inclusion families (the index
0 refers to the matrix). The concentration tensor Ai is an operator that relates the local strain tensor in the ith crack
inclusion family to the REV strains. Based on Eshelby's theory, the state of stress in each crack inclusion is uniform,
and the concentration tensor Ai can be calculated as follows:44

Ai =A∞
i :

Xn

j=0
ϕiA

∞
i

� �−1
, ð15Þ

in which A∞
i is the concentration tensor that relates the local strain field in the crack inclusions of the ith family to the

strain applied in the far field, E∞:

ϵi =A∞
i :E∞: ð16Þ

We have

A∞
i = ½I+Pi : ðCi−CoÞ�−1: ð17Þ

In the Mori–Tanaka scheme, the stiffness of the infinite medium Co is equal to the matrix stiffness. Pi is
a fourth-order tensor specific to each crack inclusion family, the expression of which can be found in the work
of Mura.45

According to Levin's theorem,46 the REV stress �σ is expressed as a function of the REV strain �ϵ and of the
eigenstrain of each component, as follows:

�σ=Chom : �ϵ−
Xn

i=0
ϕiCi : ηi :Ai: ð18Þ

On the right side of Equation (18), the first term (Chom : �ϵ ) is the linear elasticity relation for a homogeneous
medium, while the second term describes how the REV stress depends on the eigenstrain ηi (chemical viscous strain) of
each component in the REV. The strain field in each phase (crack inclusion family and matrix) is related to the macro-
scopic strain field and to the eigenstrains of that phase, as follows:

ϵi =Ai : �ϵ+
Xn

j=0
Dijηj, ð19Þ

where Dij is the influence tensor, which accounts for the influence of the eigenstrain of a phase on the eigenstrain of
other phases. Substituting Equation (19) into Equation (13), using stress admissibility conditions and comparing with
Equation (18), the expression of Dij is found, as follows:

47

Dij = δijA∞
i :Pi−ϕjAi :A∞

j :Pj + Ai :A∞ :P−A∞
i :Pi

� �
: ðChom−CÞ :A∞ :P
h i−1

�

:ϕj ðI−AjÞT + ðChom−CjÞ :A∞
j :PjÞ

h io
:Cj,

ð20Þ

where δij and I are the Kronecker delta and the fourth-order identity tensor, respectively.
In the Mori–Tanaka scheme, the chemical shear strain γc is introduced as the eigenstrain ηi at the grain scale. The

occurrence of eigenstrain triggers the redistribution of stress field and strain field in the REV (Equations 19 and 13).
The updated local stress influences, in turn, the evolution of eigenstrain (chemical viscous strain) at the grain scale
(Equation 12).

8 SHEN ET AL.
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5 | MODEL CALIBRATION

The proposed Mori–Tanaka homogenization model is now calibrated against the results presented in Section 2 for the
sets of small loading cycles performed at 0% and 3.8% permanent strain. The distribution of the orientation of the slid-
ing planes was obtained by image analysis (Figure 7). Tens of optical petrographic images were stitched together to
allow observation of 1–200 grains. Grain boundaries were manually traced, and opening-mode microcracks were identi-
fied based on two criteria: (1) There is a clear separation between two salt grain boundaries; and (2) the opposing sides
of these two salt grain boundaries match well geometrically, which indicates that they were previously in contact. Since
sliding on a flaw cannot produce a displacement without opening a crack at the tip of the flaw, we assumed that
opening-mode cracks indicated the propagation of shear-mode cracks. Accordingly, we assumed that a grain boundary
that slides is a grain boundary that (Figure 8)

• Either connects to an intergranular opening-mode crack at one end and to a void at the other end;
• Or connects to an intergranular opening-mode crack at each of its ends.

We counted the number of sliding planes (Ns) and the number of boundary sections (Nb) in the microscopic images,
which allowed us to calculate the following 2-D sliding plane density φ, as follows:

φ=
Ns

Nb
: ð21Þ

The mechanical properties of the crack inclusions were then calibrated against the stress–strain curves obtained
experimentally, as described below.

We introduce the following relationship between the sliding plane density φ and the volume fraction of the crack
inclusions (ϕc) considered in the REV:

ϕc = β1φ
β2 , ð22Þ

where β1 and β2 are parameters that need to be calibrated. For simplicity, we assume that all crack inclusion orienta-
tions are represented with the same volume fraction ϕc/Ns.

The orientation angle of a crack plane obtained by image analysis in 2D is taken equal to the angle formed by the
crack plane with the horizontal in 3D, which is identical to the angle between the normal direction of the crack plane

(A) (B)

FIGURE 7 Binary images of salt

microstructure with permanent axial

strain ϵa = 0% and ϵa = 3.8%. The blue

scale bar represents 0.5 mm. The red

inserts indicate the presence of opening-

mode cracks and associated sheared

grain boundary segments36 [Colour

figure can be viewed at

wileyonlinelibrary.com]

FIGURE 8 Schematic showing the interpretation of the microscopic images to

find the sliding cracks. Blue arrows show the shearing directions [Colour figure can be

viewed at wileyonlinelibrary.com]
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and the loading axis, that is, θ in Figures 5 and 9. We assume that the angle of revolution of the crack planes around
the loading axis (often noted ψ) is uniformly distributed in the REV. This hypothesis is supported by the fact that
(i) specimens were fabricated by consolidating salt aggregates at high temperature and where statistically identical to
one another; (ii) the loading conditions and the shape of the specimen were axis-symmetric. We sorted the values of θ
obtained by image analysis for all the sliding planes, by ascending order. We divided the interval of variation of the
angle θ into 10 subintervals. In each subinterval, the mean of θ was calculated. The distribution of θ in the REV was
defined by the 10 mean θ values, weighted by the number of occurrences of θ in that interval, and normalized by the
total number of angles θ observed in the image. Ten uniformly distributed values of ψ , ranging from 0o to 360o, were
used to define the distribution of the revolution angles of the crack inclusions of the REV. As a result, 100 crack inclu-
sion families were defined, each having a specific orientation defined by a couple of angles (θ, ψ).

By analogy with damage mechanics, we introduce two parameters CK and CG to account for the stiffness degrada-
tion of the crack inclusions as a consequence of sliding (similar to the evolution of microscopic cracks). CK and CG

range from 0 to 1.48 The bulk modulus Ki and the shear modulus Gi of the crack inclusions of family i are calculated as
follows:

Ki =CKKm, ð23Þ

Gi =CGGm, ð24Þ

where Km and Gm are bulk and shear moduli of the matrix, respectively.
In the small compression cycles done with a permanent axial strain equal to 0%, few sliding planes are observed.

The stiffness of the salt rock REV is controlled by the stiffness of the matrix. We thus calibrate the bulk and shear mod-
uli of the matrix (Km and Gm) against the results of the small cyclic compression cycles with a zero permanent strain. In
the small compression cycles done with a permanent axial strain equal to 3.8%, very small chemical shear strain occurs
in the first cycle C1, because the strain rate is high, and the period of time of the loading is small. The deformation of
salt rock in C1 is controlled by the modulus reduction parameters CK and CG, and the volume fraction of the crack
inclusions, ϕc. ϕc depends on the parameters β1 and β2 (Equation 22). So the parameters β1, β2, CK, and CG are fitted to
match the stress–strain curve C1. The geometry of the crack planes and the volume fraction of the crack inclusion fami-
lies influence the reduction of stiffness and the development of hysteresis in the three cycles C1, C2, and C3. The
parameters controlling the geometry of the crack planes are the roughness angle α and the thickness of the crack plane,
c. We calibrate α and c to match the stress–strain curves in C2 and C3. We did not simulate the deformation of salt rock
during the waiting period of time between small loading cycles, which resulted in a loss of accuracy. Cycles C2 and C3
were manually shifted and initialized at the same initial axial strain as that recorded in the experiments. The calibrated
parameters are listed in Table 1, and simulations done at the material point with the calibrated model are shown in
Figures 10 and 11. The typical shear modulus of salt rock ranges from 8.85 to 15.60 GPa, and the typical bulk modulus

FIGURE 9 The orientation of a crack plane. The z axis is the loading direction. θ

is the angle between normal direction (n) of a crack plane and the z axis. ψ represents

the angle between the x axis and the projection of the normal direction of the crack

plane on the horizontal plane (xy plane). [Colour figure can be viewed at

wileyonlinelibrary.com]

TABLE 1 Parameters of the rate-dependent micro–macro model of salt calibrated against the results of the small loading cycles at 0%

and 3.8% permanent axial strain

Mechanical properties Crack geometry

Km Gm CK CG β1 β2 c α

GPa GPa − − − − μm o

17.0 10.5 0.9 0.6 1.91 1.34 2.0 30
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of salt rock ranges from 14.89 to 42.5 GPa.11,49,50 The calibrated bulk and shear moduli fall in these ranges. Due to the
low confinement, the values of the moduli are relatively small.

When the permanent axial strain ϵa is 0%, no sliding planes develop. Brine is isolated in the fluid inclusions, and
there is no brine film at the grain boundaries to facilitate the pressure solution process. The simulation results show
that the stress–strain curves obtained for the small loading cycles C1, C2, and C3, conducted at different strain rates,
are superimposed, which indicates that the effects of chemical reactions are negligible (Figure 10). According to
Figure 11, our model can well capture the stiffness reduction and hysteresis evolution of salt rock, which are observed
at a permanent strain of 3.8%.

Figure 12A presents the development of local normal contact stress on the segments n1 and n2 of a crack surface in
one of the crack inclusion families, during the small loading cycles performed at a permanent axial strain of 3.8 %. Ini-
tially, during C1, the compressive normal stress on segment n1 (σ1n) is much larger than the compressive normal stress
on segment n2 (σ2n). Then, the difference between σ1n and σ2n decreases. During the unloading phase of C2, σ1n gets equal
to σ2n (intersection of the red dashed line and the red solid line in Figure 12A). Then, the chemical shear strain γc starts
to decrease as shown in Figure 12B. The strain rate in C3 is 1/10 of the strain rate of C2, and the duration of C3 is
10 times that of C2. γc is 2.0 × 10−4 when Δϵa reaches its maximum value in C3, which is only four times the value of γc
when Δϵa reaches its maximum in C2 (0.5 × 10−4). This is because the smaller difference between σ1n and σ2n decelerates
the accumulation of chemical strain (Equation 12).

6 | SENSITIVITY ANALYSIS

We now investigate the sensitivity of the deformation of the REV to the geometry of the crack plane (thickness of
crack c and roughness angle α) and to the volume fraction of the crack inclusion families. In all the simulations
presented in the following, the angle between the direction of the crack planes and the horizontal direction is set
equal to 60o. The strain rate is 3 × 10−6/s. The mechanical properties calibrated above are adopted (see Table 1).
In this section, we compare the model predictions for crack thicknesses of 1, 3, 5, and 7 μm51 and for roughness
angles of 10o, 30o, 45o, and 60o.52

(A) (B)

FIGURE 10 Model calibration

against the results of the small loading

cycles at a permanent axial strain

ϵa = 0%. Solid lines: simulation results.

Dashed lines: experimental results

[Colour figure can be viewed at

wileyonlinelibrary.com]

(A) (B)

FIGURE 11 Model calibration

against the results of the small loading

cycles at a permanent axial strain ϵa =

3.8%. Solid lines: simulation results.

Dashed lines: experimental results

[Colour figure can be viewed at

wileyonlinelibrary.com]

SHEN ET AL. 11



SHEN et al. 39

According to Figure 13, larger chemical strain and larger deformation are produced for thinner cracks, which is con-
sistent with Equation (12). A thinner sliding plane provides a shorter diffusion path from the crack plane segment with
large normal stress to the crack plane segment with small normal stress. More salt mineral is dissolved at the grain con-
tacts, and the shear displacement increases. When c is very small (i.e., c = 1 μm), the stress of the crack inclusions is
redistributed very rapidly because the dissolution rate is very high at the grain contacts. As a result, chemical strain
develops in the direction opposite to the sliding, and hysteresis reduces.

Figure 14 shows that a larger roughness angle α enhances the accumulation of irreversible deformation and the
development of hysteresis. When α is larger than 45o, the influence of α becomes insignificant. A larger roughness angle
α decreases the length of the diffusion path of salt ions, which enhances the shear strain of the crack inclusions. In
addition, the roughness angle α controls the difference in normal stress, σ1n−σ2n. When α is very small, segments n1 and
segments n2 have very similar orientations (Figure 5A). Hence, the difference of normal stress becomes negligible, and
as a result, the shear strain rate of the crack inclusion is very small.

(A) (B)

FIGURE 12 Local normal stress

and chemical strain in a representative

crack inclusion family in which the

orientation of the crack plane is 25o.

The difference of normal stress

between the planes of normal n1 and n2
decreases during the unloading

phases. The chemical strain starts

decreasing when the sign of the

difference of normal stress is altered

[Colour figure can be viewed at

wileyonlinelibrary.com]

(A) (B)

FIGURE 13 Influence of crack

thickness on the stress–strain
relationship. The total volume fraction

of the crack inclusions, ϕc, is equal to

50%. The roughness angle α is set equal

to 30o. More irreversible deformation

accumulates for very large or very small

crack thicknesses. The hysteresis is less

pronounced when the crack film is

either very thin or thick

(A) (B)

FIGURE 14 Influence of the

roughness angle α on the stress–strain
relationship. The total volume fraction

of crack inclusions, ϕc, is equal to 50%.

The crack thickness c is set equal to

2.0 μm. A larger angle α enhances the

accumulation of irreversible

deformation and the development of

hysteresis
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The volume fraction of the crack inclusions (ϕc) does not influence the local chemical shear strain rate in the crack
inclusions. However, a larger ϕc amplifies the effect of local strains on the macroscopic deformation of the REV, includ-
ing the elastic strain (Equation 14) and the chemical strain induced by pressure solution (Equation 18). The larger the
volume fraction ϕc, the larger the REV deformation and the larger the hysteresis, as shown in Figure 15.

7 | ENERGY DISSIPATION

The hysteresis and the residual strain observed in the tests indicate that energy is dissipated during the loading and
unloading cycles. Figure 16A presents the external work input to the salt rock REV for different values of the crack
thickness (c), for a strain rate is 3 × 10−6/s. The roughness angle α is set equal to 30o, and the total volume fraction of
the crack inclusions, ϕc, is equal to 50%. In each cycle, the specimen is unloaded after the maximum differential stress
reaches 6MPa. Therefore, the maximum external work ever provided to the REV can be calculated by multiplying the
maximum axial strain by 6MPa.

As can be seen from Figure 16, a smaller crack thickness is accompanied by a faster pressure solution process at
the crack faces, which enhances the local chemical strain and increases the maximum strain undergone by the REV.
As a result, the smaller the crack thickness, the larger the maximum external work at the REV scale. When c is large
(c >7 μm), the rate of pressure solution is too small to influence the chemical strain or trigger any hysteresis. When c is
small (c< 1 μm), pressure solution happens so quickly that stress is redistributed quasi-instantaneously in the salt REV
during the loading path. The maximum strain of the REV is not influenced by pressure solution. Little energy is dissi-
pated during the loading cycle when c is large or small, because hysteresis is negligible.

Figure 17 shows that the volume fraction of the crack inclusions largely influences the external work provided to
the salt rock REV. In these simulations, the roughness angle α was set equal to 30o. The crack thickness c was set equal
to 2.0 μm. Figure 17A suggests that a higher volume fraction of crack inclusions amplifies the effects of the chemical
strains in the crack inclusions, which yields more chemical strain and irreversible deformation at the REV scale. As a
result, both the maximum external work and the dissipated energy increase with the volume fraction of the crack
inclusions.

(A) (B)

FIGURE 15 Influence of the

volume fraction of the crack inclusions

on the stress–strain relationship. The

roughness angle α is set equal to 30o.

The crack thickness c is set equal to

2.0 μm. Irreversible deformation and

hysteresis increase with the volume

fraction of the crack inclusions in

the REV

(A) (B)

FIGURE 16 Influence of crack

thickness on energy dissipation. The

roughness angle α is set equal to 30o.

The total volume fraction of the crack

inclusions, ϕc, is equal to 50%. A smaller

crack thickness induces a larger

maximum external unit work. The

energy dissipated by diffusion is

negligible when the thickness of cracks

is either very larger or very small
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To summarize, pressure solution can induce significant hysteresis, which may reduce the efficiency of geological
storage facilities that are loaded cyclically, such as CAES caverns. From the analysis above, we conclude that CAES is
most efficient in undamaged salt rock with only a few sliding planes or in salt rock where the pressure solution rate is
either very large (small crack thickness c) or very small (large crack thickness c).

8 | CONCLUSIONS

A chemo-mechanical homogenization framework is proposed to capture the rate-dependent behavior of salt rock dur-
ing cyclic compression loading. The REV is viewed as a homogeneous matrix that contains sliding cracks. A crack
inclusion is defined as a spherical volume around a sliding crack that has rough surfaces. Field variables at the REV
scale are calculated as the average of the local field variables over all the possible distributions of orientation, crack
thickness and roughness angle of the crack inclusions. The shear displacement of the sliding planes is related to the
mass of salt ions that diffuse along the crack surface. The rate of diffusion is calculated by a pressure solution model.
The shear deformation of a crack inclusion due to pressure solution defines the chemical eigenstrain of that crack inclu-
sion. The relationship between the inclusion-scale stresses and strains and the REV scale stresses and strains is
established by using the Mori–Tanaka homogenization scheme.

The proposed rate-dependent homogenization model is calibrated against cyclic compression tests. It is noted that a
lower strain rate and/or a larger number of sliding cracks enhances stiffness reduction and hysteresis. Sensitivity ana-
lyses show that thinner sliding cracks (i.e., thinner brine films) promote stiffness reduction and accelerate stress redis-
tributions in the crack inclusions. Higher roughness angles lead to an increased difference of normal stress along the
different segments of the crack plane and to a reduced diffusion path, which both amplify the reduction of stiffness and
the development of hysteresis. The larger the volume fraction of the crack inclusions, the larger the REV deformation
and the larger the hysteresis—this is because the presence of a higher number of sliding planes amplifies the effects of
the local shear strains driven by pressure solution. In the proposed framework, we simplified the model by assuming
same thickness for all cracks and same roughness angle for each component in the REV. Assuming homogeneous crack
thickness and roughness angle leads to delayed stress redistribution under the proposed homogenization framework,
hence to larger REV deformation. These limitations could be overcome by lifting some of the restricting geometrical
assumptions, provided that experimental data can support model calibration.

Our results confirm that the rate-dependent behavior of salt rock is governed by pressure solution on grain bound-
aries at low pressure and low temperature. The proposed model provides the first micromechanical explanation of the
rate dependent behavior of salt under cyclic loading at room temperature. The homogenization scheme can easily be
adapted to other geomaterials that are subject to pressure solution or chemical weathering. Results presented in this
study shed light on the design of geological storage facilities that undergo cyclic unloading, which could help optimize
the energy production cycle with low carbon emissions.
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(A) (B)

FIGURE 17 Influence of the

volume fraction of the crack inclusions

on energy dissipation. The roughness

angle α is set equal to 30o. The crack

thickness c is set equal to 2.0 μm. A

larger volume fraction of crack

inclusions leads to greater external work

applied to the salt rock REV and to

more energy dissipated by pressure

solution
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(“CAREER: Multiphysics Damage and Healing of Rocks for Performance Enhancement of Geo-Storage Systems – A
Bottom-Up Research and Education Approach”).

List of symbols
a radius of crack inclusions
Ai concentration tensor of the component i
Ao

i concentration tensor of the matrix component
α angle between the plane of sliding plane and its subsurfaces
b length of the subsurface of sliding planes
β volume fraction parameter
c thickness of shear-mode cracks
C concentration of minerals (ions) in the fluid
Co reference concentration
CK, CG parameters for bulk and shear moduli degradation
Chom homogenized stiffness of the REV
Ci stiffness of the component i
Co stiffness of matrix
γ c shear strain of the crack inclusion
Dij influence tensor
d width of the subsurface of shear-mode cracks
D grain boundary diffusion coefficient
δij Kronecker delta
ϵi local total strain of component i
ϵm strain field in the matrix
ϵv volumetric strain of the REV
�ϵ strain of the REV
ϕi volume fraction of component i
G shear modulus
η eigenstrain of crack inclusions
I fourth-order identity tensor
J diffusion flux along subsurface
K bulk modulus
n number of components in the REV
Ns number sliding planes counted in the microscopic images
Nb number of boundary sections counted in the microscopic images
n the normal direction of crack plane
θ orientation of the sliding plane plane from the horizontal
R gas constant
S thickness of the brine film at the crack surface
σ i local total stress of component i
σ n normal stress applied on the subsurface of shear-mode cracks
�σ stress of the REV
t the tangential direction of crack plane
T Kelvin temperature
ϕc volume fraction of all the crack inclusions
φ density of sliding planes
V d dissolution rate at the subsurface
V c tangential velocity at the crack plane
ψ angle of revolution of the crack planes around the loading axis
Ω molar volume of NaCl
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